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Abstract Numerical methods are described and results are presented for a system of convection–diffusion
dispersion–reaction equations. Discretization methods that were developed earlier by the author are used.
The methods allow large time steps for simulating the transport–reaction model of a waste disposal. With
higher-order discretization methods, based on finite-volume methods, one may use large time steps without
loss of accuracy. A multi-physical multi-dimensional equation is broken down into simpler physical and
one-dimensional equations. These simpler equations are handled with locally higher-order discretization
methods and the results are coupled by operator-splitting methods. An improved explicit time-discreti-
zation method, with embedded analytical solutions, for the convection–reaction equation and an implicit
time-discretization diffusion–dispersion equation is described. For the numerical experiments the under-
lying program-tool R3T is briefly introduced and the main concepts are presented. Benchmark problems
for testing the discretization methods of higher order are described. Real-life problems for simulating
radioactive-waste disposals with underlying flowing groundwater are presented and discussed.

Keywords Convection–diffusion dispersion–reaction equation · Embedded analytical solutions ·
Finite-volume methods · Multi-physics · Simulation of radio-active-waste disposals

1 Introduction

Our motivation for studying transport–reaction processes arose from the need to simulate waste dis-
posals for radioactively contaminated groundwater flowing through an overlying rock. The underlying
model problem is given as a convection–diffusion dispersion–reaction equation, which is analyzed and
described in [1, Chapter 4], [2, Chapter 1], [3, Sect. 1.1]. The analysis of the existence and uniqueness
of these convection–diffusion dispersion–reaction equations is described in the literature [4, Chapter 2].
Because of the dominant convective term, owing to a strong influence of the flow term, the behavior
of the equations is governed by a hyperbolic partial differential equation; see [5, pp. 349–427]. For the
numerical analysis, conservative discretization methods with stabilization of the convective term (see

J. Geiser (B)
Department of Mathematics, Humboldt-Universität zu Berlin,
Unter den Linden 6, D-10099 Berlin, Germany
e-mail: geiser@mathematik.hu-berlin.de



80 J Eng Math (2007) 57:79–98

[6, Chapters 1, 2], [7, Chapters 4, 12]) are considered. For the spatial-discretization methods, conservative
methods, for example, finite-volume methods [7], [8, Chapter 3], flux-based methods [9], or discontinu-
ous Galerkin methods [10] are considered, due to the conservation of mass. Because of the proposed
large time scales for simulating time periods of about 10,000 years (cf. [11]), one has to utilize very
large time steps. To obtain such large time steps, a combination of explicit and implicit time-discret-
ization methods is needed [12]. Therefore the convection–reaction parts are discretized with explicit
time-discretization methods and the diffusion–dispersion equation with implicit discretization methods
(see [7, 13]). For coupling the two different parts of the discretized equations, one may use explicit–
implicit Runge–Kutta methods, called FS-RK methods (see [14, Chapter 3]) or apply an operator-split-
ting method and solve each equation independently ([15, 16]). Explicit–implicit Runge–Kutta meth-
ods are, however, too complicated to implement and ineffective for large systems of equations [12]
whereas operator-splitting methods are simpler and allow one to achieve at least second-order conver-
gence [15]. For solving the implicit discretized parts, on the other hand, a multi-grid method, devel-
oped for elliptic and parabolic equations (see [17, Chapter 4], [18]), is applied (cf. [19, Chapter 2]).
Adaptive and parallel software codes are important to obtain accurate and efficient results for 2d and
3d applications in complex multi-layered domains. The computations can be further accelerated by
larger time steps by designing higher-order discretization methods which will be addressed in a future
paper.

The paper is organized as follows. A mathematical model of contaminant transport in flowing ground-
water is introduced in Sect. 2. The decoupling of the complex equation to physically simpler equations is
described in Sect. 3. In Sect. 4 we introduce the discretization methods for the decoupled equations with
respect to the convection–reaction equation. Analytical solutions embedded in our discretization methods
are discussed in Sect. 5. We introduce the numerical solvers and concentrate on a multi-grid solver in
Sect. 6. We present the software tools in Sect. 7 and results for the methods in Sect. 8. Finally we discuss
future work in the area of discretization methods.

2 Mathematical model

In the following we describe an approach to solve a complicated system of convection–diffusion
dispersion–reaction equations for the convection-dominant case. For the time-discretization we propose
a decomposition method and split complex and multi-dimensional equations into simpler equations. The
proposed operator-splitting method is based on a sequential first-order splitting (see [12, Chapter 4])
whose order can be increased by using a higher-order splitting method; see [15, 20]. For our model prob-
lem the space discretization is quite large, because of the adapted coarse grid which, however, is reduced
by using higher-order methods in space. As a result, the time-discretization error, even for a first-order
method, is much smaller than the spatial discretization error and does not influence the result appreciably.
It follows that discretization of the space variable must be done in a very careful manner by adapting the
discretization method to each part of the equation. For the convection–reaction equation we use explicit
time-discretization and higher-order finite-volume methods for the space discretization. An improved
higher-order discretization method for the convection–reaction equation is presented and the splitting
error in time is skipped because of the embedding of the exact solution; cf. [21, Chapters 3, 5]. The method
is based on analytical solutions for the convection–reaction equation for each one-dimensional flow direc-
tion. For the diffusion–dispersion equation we use an implicit time discretization and the finite-volume
method for the space discretization. So for both discretization methods one can achieve higher-order accu-
racy. Furthermore, for the implicit methods we use preconditioned multi-grid solvers. These methods are
implemented and applied in the software package R3T; see [22, 23].
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Here we deal with the following equation, see [2], given by

∂t Rα cα + ∇·(vcα − D∇cα)+ λαβ Rα cα =
∑

γ∈γ (α)
λγα Rγ cγ (1)

with α = 1, . . . , m, (2)

where the unknowns cα = cα(x, t) are defined in�×(0, T) ⊂ IRd ×IR with d being the space dimension. The
parameters Rα ∈ IR+ are constant and are called retardation factors. The decay parameters are λαβ and
represent the decay rates from α to β, where γ (α) are the predecessors of element α; D is the Scheidegger
diffusion–dispersion tensor and v is the velocity.

The main contribution of this paper is the application of a new method based on an embedded analytical
solution for systems of one-dimensional convection–reaction equations with different retardation factors
and constant velocities and an explicit finite-volume method for multi-dimensional convection–reaction
equations.

The newly proposed method has no splitting error and is exact in each one-dimensional direction. For
solving multi-dimensional transport equations we consider one-dimensional transport equations and cou-
ple the results by a correct summation of their mass transport. So large time steps and the application of
coarser grids are possible with acceptable small discretization errors.

The higher-order finite-volume method based on TVD methods and constructed under the discrete
minimum and maximum principle is used to reach second-order accuracy for all components.

To derive the new discretization method we concentrate on d-dimensional convection–reaction equa-
tions with equilibrium sorption. The proposed equation is given as

Ri∂tci + ∇·(vci) = −λiRici + λi−1Ri−1ci−1, i = 1, . . . , m, (3)

ci = (c1,i, . . . , cd,i)
T ∈ IRd, (4)

where the trivial inflow and outflow boundary conditions are given by c = 0 and for the initial con-
ditions ci(x, 0) = ci,0(x) rectangular, trapezoidal and polynomial impulses are used. Based on the one-
dimensional convection–reaction equation with equilibrium sorption and initial impulses, we derive the
novel discretization methods.

In the following section we describe the operator-splitting method for decoupling complex multi-physical
equations into simpler physical equations.

3 Operator-splitting methods

Operator-splitting methods are developed to solve complex models in geophysical and environmental
physics. They are described and applied to complex problems in [15, 16, 20] and [24, Chapter 1]. The idea
underlying operator-splitting methods consists in decoupling complex equations into simpler ones that can
be solved in a more efficient and accurate manner. In our case we can reduce the space errors of each
simpler equation by using locally adapted spatial-discretization methods. It is sufficient to apply a first-
or second-order operator splitting and couple our simpler equation with dominant space errors. So we
achieve higher order in space and the time error does not influence our result by using coarse grids for the
spatial discretization. The different operator-splitting methods are described in the following subsection.

3.1 Splitting methods of first order

Some first-order splitting methods are described below. We consider the following ordinary linear differ-
ential equations:

∂tc(t) = A c(t) + B c(t), (5)
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where the initial conditions are given as cn = c(tn). The operators A and B are assumed to be bounded lin-
ear operators in the Banach space X with A, B : X → X. In applications, the operators A and B correspond
to physical operators, e.g. the convection and the diffusion operator.

The operator-splitting method is introduced as a method for solving two equation parts sequentially,
with respect to initial conditions. The method is given as following

∂c∗(t)
∂t

= Ac∗(t), with c∗(tn) = cn,

∂c∗∗(t)
∂t

= Bc∗∗(t), with c∗∗(tn) = c∗(tn+1). (6)

where the time-step is defined as τn = tn+1 − tn. The solution of equation (5) is cn+1 = c∗∗(tn+1).
The splitting error of the method is derived by means of a Taylor expansion; cf. [21]. We obtain the

global error as

ρn = 1
τ
(exp(τn(A + B))− exp(τnB) exp(τnA)) c(tn)

= 1
2
τn[A, B] c(tn)+ O((τn)2), (7)

where [A, B] := AB−BA is the commutator of A and B. We get an error of the order O(τn) if the operators
A and B do not commute, otherwise the method is exact.

3.2 Higher-order splitting methods

We can improve our method by the so-called Strang splitting method, which is of second order (cf. [15]).
The method is as follows:

∂c∗(t)
∂t

= Ac∗(t), with tn ≤ t ≤ tn+1/2 and c∗(tn) = cn,

∂c∗∗(t)
∂t

= Bc∗∗(t), with tn ≤ t ≤ tn+1 and c∗∗(tn) = c∗(tn+1/2), (8)

∂c∗∗∗(t)
∂t

= Ac∗∗∗(t), with tn+1/2 ≤ t ≤ tn+1 and c∗∗∗(tn+1/2) = c∗∗(tn+1),

and cn+1 = c∗∗∗(tn+1) represents the result of the method.
The splitting error of this method is given as (cf. [13])

ρn = 1
τ

(
exp(τn(A + B))− exp

(
τn

2
A

)
exp(τnB) exp

(
τn

2
A

))
c(tn)

= 1
24
(τn)2([B, [B, A]] − 2[A, [A, B]]) c(tn)+ O((τn)4). (9)

We get second-order accuracy for the non-commuting case and an exact result if the operators commute.
We can improve the order by using more intermediate steps; cf. [20]. First-order splitting is applied to

the convection–reaction term and the diffusion–dispersion term. The splitting is done with respect to the
dominant space error in the convection term. So we split the system into a convection–reaction and a
diffusion equation. The time error for such a combination can be neglected by using small time steps to
reduce the error.

In the next section we present the discretization methods for the equations.
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4 Discretization

For the space discretization we use finite-volume methods and for the time discretization we apply explicit
or implicit Euler methods. In the next sections we introduce the notation for the space discretization and
describe the discretization methods for each equation part.

4.1 Notation

The time interval (0, T) is discretized in the time intervals (tn, tn+1) for n = 0, 1, . . .. The computational
cells are given as �j ⊂ � with j = 1, . . . , I, with I being the number of the nodes.

For the application of the finite-volume technique we have to construct a dual mesh for the triangu-
lation T , see [25] and [26], for the domain �. First the finite elements for the domain � are given by
Te, e = 1, . . . , E. The polygonal computational cells �j are related to the vertices xj of the triangulation.

The notation for the relation between the neighbor cells and the concerned volume of each cell is given
as follows. Let Vj = |�j| and the set 
j denote the neighbor-point xk to the point xj. The boundary of the
cell j and k is denoted as �jk. We define the flux over the boundary �jk as

vjk =
∫

�jk

n ·v ds. (10)

The inflow flux is given as vjk < 0, the outflow flux is vjk > 0. The antisymmetry of the fluxes is denoted as
vjk = −vkj. The total outflow flux is given as

νj =
∑

k∈out(j)

vjk. (11)

The idea of the finite volumes is to construct an algebraic system of equations to express the unknowns
cn

j ≈ c(xj, tn). The initial values are given by c0
j . The expression for the interpolation schemes can be given

naturally in two ways; the first possibility is given with the primary mesh of the finite elements

cn =
I∑

j=1

cn
j φj(x) (12)

with φj being the standard global finite-element basis functions [25]. The second possibility is given by the
dual mesh of the finite volumes with,

ĉn =
I∑

j=1

cn
j ϕj(x), (13)

where ϕj are piecewise constant discontinuous functions defined by ϕj(x) = 1 for x ∈ �j and ϕj(x) = 0
otherwise.

4.2 First-order discretization method of the convection equation

We deal with the following convection equation

∂tR c − v ·∇c = 0 (14)

with the simple boundary condition c = 0 for the inflow and outflow boundary and the initial values
c(xj, 0) = c0

j (x). We use a piecewise constant discretization method with the upwind discretization done as
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in [25] and get

VjRcn+1
j = VjRcn

j − τn
∑

k∈out(j)

vjkcn
j + τn

∑

k∈in(j)

cn
kvkj,

VjRcn+1
j = cn

j (RVj − τnνj)+ τn
∑

k∈in(j)

cn
kvkj. (15)

The explicit time discretization has to satisfy the discrete minimum–maximum property [25], and we get
the following restriction for the time steps

τj = R Vj

νj
, τn ≤ min

j=1,...,I
τj. (16)

To obtain improved spatial discretization methods and apply larger time steps, we introduce a reconstruc-
tion with a linear polynomial as a higher test-function in the next subsection.

4.3 Higher-order discretization method for the convection equation

The reconstruction is based on the Godunov method and we apply a limiter function that fulfills the local
min–max property. The method is explained in [25], but we discuss the algorithm in the following section.

The linear polynomials are reconstructed by the element-wise gradient and are given as

un(xj) = cn
j , (17)

∇un|Vj = 1
Vj

E∑

e=1

∫

Te∩�j

∇cndx with j = 1, . . . , I. (18)

The piecewise linear functions are denoted as follows:

un
jk = cn

j + ψj∇un|Vj(xjk − xj) with j = 1, . . . , I, (19)

where ψj ∈ (0, 1) is the limiter function and, based on this, Eq. 25 fulfills the discrete minimum–maximum
property as described in [25].

We also use the limitation of the flux to get non-overshooting, when transporting the mass and obtain
the maximal time step. We get the correct restriction due to the flux limiter and obtain the following
concentration as

ũn
jk = un

jk + τj

τn

(
cn

j − un
jk

)
. (20)

Using all the previous schemes, we may write the discretization for the second order in the follow-
ing form

RVjc
n+1
j = RVjcn

j − τn
∑

k∈out(j)

ũn
jkvjk + τn

∑

l∈in(j)

ũn
ljvlj. (21)

Based on this discretization method we can embed the reaction equation as a local effect, described in the
next subsection.

4.4 Discretization method for the convection–reaction equation based on embedded one-dimensional
analytical solutions

We apply Godunov’s method for the discretization method, cf. [7], and extend the formulation with the
analytical solution of the convection–reaction equations. We reduce the multi-dimensional equation to
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one-dimensional equations and solve each equation exactly. The one-dimensional solution is multiplied by
the underlying volume and we get the mass formulation. The one-dimensional mass is embedded into the
multi-dimensional mass formulation and we obtain the discretization of the multi-dimensional equation.

The algorithm is given in the following manner

∂tcl + ∇·vlcl = −λlcl + λl−1cl−1 with l = 1, . . . , m.

The velocity vector v is divided by Rl. The initial conditions are given by c0
1 = c1(x, 0), else c0

l = 0 for l =
2, . . . , m and the boundary conditions are trivially cl = 0 for l = 1, . . . , m.

We first calculate the maximal time step for cell j and concentration i by use of the total outflow fluxes

τi,j = Vj Ri

νj
, νj =

∑

k∈out(j)

vjk.

We get the restricted time step with the local time steps of cells and their components

τn ≤ min
i=1,...,m
j=1,...,I

τi,j.

The velocity of the discrete equation is given by

vi,j = 1
τi,j

.

We calculate the analytical solution of the mass, cf. Sect. 5, using Eqs. 42 and 44

mn
i,jk,out = mi,out(a, b, τn, v1,j, . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi),

mn
i,j,rest = mn

i,j f (τn, v1,j, . . . , vi,j, R1, . . . , Ri, λ1, . . . , λi),

where a = VjRi(cn
i,jk − cn

i,jk′), b = VjRicn
i,jk′ and mn

i,j = VjRicn
i,j. Further cn

i,jk′ is the concentration at the
inflow- and cn

i,jk is the concentration at the outflow-boundary of the cell j.
The discretization with the embedded analytical mass is calculated by means of

mn+1
i,j − mn

i,rest = −
∑

k∈out(j)

vjk

νj
mi,jk,out +

∑

l∈in(j)

vlj

νl
mi,lj,out,

where vjk/νj is the re-transformation for the total mass mi,jk,out in the partial mass mi,jk. In the next time
step the mass is given as mn+1

i,j = Vj cn+1
i,j and in the old time step it is the rest mass for the concentration i.

The proof is given in [21]. In the next section we derive an analytical solution for the benchmark problem;
cf. [27], [28, Chapter 3].

4.5 Discretization of the reaction equation

The reaction equation is an ordinary differential equation given as follows:

∂tRici = −λiRici + λi−1Ri−1ci−1, (22)

where i = 1, . . . , m and we set λ0 = 0. The decay factors are λi ≥ 0·0 and the retardation factors are
Ri > 0·0. The initial conditions are c1(x, t0) = c01 and ci(x, t0) = 0 with i = 2, . . . , m.

We can derive the solutions for these equations, cf. [29, 30], as

ci = c01
R1

Ri

i

i∑

j=1


j,i exp(−λjt), (23)
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where i = 1, . . . , m. The solutions are defined for the case λj �= λk with j �= k and j, k ∈ 1, . . . , M. The
factors 
i and 
j,i are given as


i =
i−1∏

j=1

λj, 
j,i =
i∏

j=1
j �=k

1
λk − λj

. (24)

For pairwise equal reaction factors the solution has been derived in [21].
In the next subsection the discretization of the diffusion–dispersion equation will be introduced.

4.6 Discretization of the diffusion–dispersion equation

We discretize the diffusion–dispersion equation with implicit time discretization and finite-volume method
for the following equation

∂tRc − ∇·(D∇c) = 0, (25)

where c = c(x, t) with x ∈ � and t ≥ 0. The diffusion–dispersion tensor D = D(x, v) is obtained by the
Scheidegger approach, cf. [31], with v denoting the velocity and R > 0·0 the retardation factor.

The boundary values on ∂� are represented by n ·D ∇c(x, t) = 0, whereas the initial conditions are
given by c(x, 0) = c0(x).

We integrate Eq. 25 over space and time and obtain

∫

�j

tn+1∫

tn

∂tR(c) dt dx =
∫

�j

tn+1∫

tn

∇ · (D∇c)dt dx. (26)

The time integration is done by the backward Euler method and the diffusion–dispersion term is lumped,
cf. [21]:∫

�j

(R(cn+1)− R(cn))dx = τn
∫

�j

∇·(D∇cn+1)dx. (27)

Equation (27) is discretized over the space after using the Green formula.∫

�j

(R(cn+1)− R(cn))dx = τn
∫

�j

Dn ·∇cn+1dγ , (28)

where �j is the boundary of the finite-volume cell �j. We use the approximation in space; see [21].
The spatial integration of (28) is done by the mid-point rule over the finite boundaries and given as

VjR
(

cn+1
j

)
− VjR

(
cn

j

)
= τn

∑

e∈
j

∑

k∈
e
j

|�e
jk|ne

jk ·De
jk∇ce,n+1

jk , (29)

where |�e
jk| is the length of the boundary element �e

jk. The gradients are calculated with the piecewise
finite-element function φl, cf. (12), and we obtain

∇ce,n+1
jk =

∑

l∈
e

cn+1
l ∇φl

(
xe

jk

)
. (30)

Using the difference notation for the neighboring points j and l, cf. [26], we obtain the following discret-
ized equation

VjR
(

cn+1
j

)
− VjR

(
cn

j

)
= τn

∑

e∈
j

∑

l∈
e\{j}

⎛

⎜⎝
∑

k∈
e
j

∣∣∣�e
jk

∣∣∣ ne
jk·De

jk∇φl(xe
jk)

⎞

⎟⎠
(

cn+1
j − cn+1

l

)
, (31)

where j = 1, . . . , m.
In the next section the analytical solutions of the convection–reaction equation will be described.
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5 Analytical solutions

In this section we deal with a system of one-dimensional convection–reaction equations represented by

∂tci + vi∂xci = −λici + λi−1ci−1 (32)

for i = 1, . . . , m with m the number of components. The unknown solutions ci = ci(x, t) are denoted as the
contaminant concentrations. The velocities vi are piecewise constant and in general different. We deal with
constant reaction rates λi and the underlying solution space is given by (0, ∞)× (0, T).

A simple (irreversible) decay chain is assumed, with λ0 = 0, and for each contaminant we have only a
single source term given as λi−1ci−1. For simplicity, we assume that vi > 0 for i = 1, . . . , m. The analytical
solutions are derived for piecewise linear initial conditions; for the use of arbitrary piecewise polynomial
functions we refer to [21].

We propose Dirichlet boundary conditions for the inflow boundary x = 0 and the initial conditions are
defined as

c1(x, 0) =
{

ax + b , x ∈ (0, 1)
0 otherwise

,

ci(x, 0) = 0 , i = 2, . . . , m,
(33)

where a, b ∈ IR+ are constants.
We apply the Laplace transformation and transform the partial differential equation to an ordinary

differential equation; see [32]. The ordinary differential equations can be solved analytically, cf. [33], [34,
Chapter 1], and the solution re-transformed in the original space of the partial differential equations. The
results are applied for the discretization methods of the one-dimensional convection–reaction equation;
see [21].

The analytical solutions are given as

c1(x, t) = exp(−λ1t)

⎧
⎨

⎩

0 0 ≤ x < v1t,
a(x − v1t)+ b v1t ≤ x < v1t + 1
0 v1t + 1 ≤ x,

, (34)

ci(x, t) = 
i

⎛

⎜⎝
i∑

j=1

exp(−λjt)
j,i

i∑

k=1
k�=j


jk,iAjk

⎞

⎟⎠ , (35)

Ajk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ x < vjt,

a(x − vjt)

+
(

b − a
λjk

)
(1 − exp(−λjk(x − vjt))) vjt ≤ x < vjt + 1

(
b − a

λjk
+ a

)
exp(−λjk(x − vjt − 1))

−
(

b − a
λjk

)
exp(−λjk(x − vjt)) vjt + 1 ≤ x

, (36)

subject to the following assumptions

vi �= vj, λi �= λj, λij �= λik and vi �= vj ∧ λi �= λj, ∀ i, j, k = 1, . . . , M, if i �= j ∧ i �= k ∧ j �= k.

The parameters λjk and 
i are given as

λkj = λjk := λj − λk

vj − vk
, 
i :=

i−1∏

j=1

λj, (37)
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and the factors 
j,i and 
jk,i are computed as


j,i =
⎛

⎜⎝
i∏

k=1
k�=j

1
λk − λj

⎞

⎟⎠ , 
jk,i =

⎛

⎜⎜⎜⎝

i∏

l=1
l �=j
l �=k

1
λk − λj

⎞

⎟⎟⎟⎠ . (38)

The solutions (34) and (35) are used in the discretization methods for the embedded analytical mass. In
the next subsection the mass reconstruction based on the analytical solution is presented.

5.1 Mass reconstruction

To simplify the calculations we consider the norm-interval (0, 1). By multiplying the analytical solution,
referred to as a concentration, with the underlying length of the finite interval, we obtain the analytical
mass. The mass is computed in the following manner.

First we construct the total mass given as

mi,sum(t) = mi,rest(t)+ mi,out(t). (39)

The total mass is calculated by the solution of the ordinary equation and is equal to

mi,sum(t) =
i−1∏

j=1

λj

⎛

⎜⎝
i∑

j=1

⎛

⎜⎝
i∏

k=1
k�=j

1
λk − λj

⎞

⎟⎠ exp(−λjt)

⎞

⎟⎠
(a

2
+ b

)
.

Then we compute the residual mass as the mass that is retained in the finite cell i; cf. Fig. 1. The residual
mass is described in [21] and given as:

mi,rest(t)=
i−1∏

j=1

λj

i∑

j=1

⎛

⎜⎝
i∏

k=1
k�=j

1
λk − λj

⎞

⎟⎠ exp(−λjt)

⎛

⎜⎝a
(1 − vjt)2

2
+ b

⎛

⎜⎝1 − vjt −
i∑

k=1
k�=j

1
λjk

⎞

⎟⎠

− a(1 − vjt)

⎛

⎜⎝
i∑

k=1
k�=j

1
λjk

⎞

⎟⎠+ a

⎛

⎜⎝
i∑

k=1
k�=j

1
λjk

⎛

⎜⎝
i∑

l≥k
l �=j

1
λjl

⎞

⎟⎠

⎞

⎟⎠

⎞

⎟⎠ , (40)

where the parameters λjk are given in Eq. 37. The outflowing mass is derived as the following difference

mi,out(τ
n) = mi,sum(τ

n)− mi,rest(τ
n), (41)

mi,out(τ
n) = mi,out(a, b, τn, v1, . . . , vi, R1, . . . , Ri, λ1, . . . , λi), (42)

mi,sum(τ
n) = f n

i

(
a

1
2

+ b
)

, (43)

f n
i (τ

n) = f (τn, v1, . . . , vi, R1, . . . , Ri, λ1, . . . , λi). (44)

where τn is the time-step, v1, . . . , vi are the velocity-, R1, . . . , Ri are the retardation parameters, λ1, . . . , λi

the reaction parameters and a, b are the parameters for the linear impulse; cf. [1]. In the next section we
describe the solution method that is used for the computations.

6 Solvers

For solving the implicit discretized diffusion–dispersion equation we apply iterative methods. We have the
fully discretized equation for our diffusion–dispersion equation:

(I − τ Ã)un+1(x̃) = un(x̃),
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where Ã is the stiffness matrix obtained from the spatial discretization, un+1 is the solution of the new time
step, un is the known solution of the old time step and the coordinates of the grid points are given as x̃ ∈ �h.
For simplicity we deal with the linear system Ax = b, where A = I − τ Ã, b = un(x̃) and x = un+1(x̃).
Because of the local discretization methods and the resulting sparse matrix A, an efficient multi-grid solver
is applied; cf. [17].

We will briefly introduce the methods for an intensive study and refer to the literature [18, 35]. We deal
with the linear-equation system

Ax = b, A ∈ IRI×I , b ∈ IRI , (45)

where A is regular, x is the unknown and b is the right-hand side.
The iteration method is given as

xm+1 = Mxm + Nb, m ∈ IN, (46)

where b is the right-hand side. A consistent iteration method is obtained for

M = 11 − NA, (47)

where 11 is the identity matrix. The matrix M is called the iteration matrix.
The usual notation for the iteration method is to express (46) in a normal form given as

xm+1 = xm − N(Axm − b). (48)

The iteration method (46) is applied for the multi-grid method [17]. We introduce the multi-grid method

MMG
0 := 0, (49)

MMG
1 := MZG

1 , (50)

MMG
l := MZG

l + Sν2
l p

(
MMG

l−1

)γ
A−1

l−1 rAl Sν1
l , (51)

where Sl is the smoother, p is the prolongation, r is the restriction, ν1 are the pre-smoothing steps and ν2
the post-smoothing steps. The coarse-grid correction MMGG

l , also known as iteration matrix, is defined as

MMGG
l := 11 − p

(
I − (MMG

l−1 )
γ
)

A−1
l−1 r Al. (52)

We use these iteration methods to solve our equations on a grid hierarchy, cf. [21].

7 Software tools

The methods described in the previous sections have been implemented in our software tool R3T. The
software package R3T is developed for solving transport-reaction equations for multiple species in flowing
groundwater in porous media. We forced the solution of the convection-dominant equations and improved
the discretizations to use coarser grids and larger time steps. The package includes error estimators, solvers
and discretization methods. For the parameter of the equation and the velocity field we use input files
to set the different values. These input files are read in run-time and for a new computation we could
change the values for an updated configuration. The solutions of the equations are written in output
files and could be used for different post-processors, e.g. visualization-programs; cf. [36, Chapters 1–3].
So for these assumptions we could test different waste-case scenarios for different initial conditions; see
Sect. 8.

The tool R3T is based on the software tool ug, cf. [37], which is based on unstructured grids. The meth-
ods for these unstructured grids are implemented in different libraries. Based on the grid hierarchy, the
solvers of the discretized equations with respect to adaptive methods are programmed. The programming
ideas consist in combining flexible tools with common libraries of solvers, discretization methods, error
estimators and a flexible application level for applications of physical and chemical models.

The numerical experiments are presented in the next section with benchmark and waste-case
scenarios.
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8 Numerical experiments

The methods introduced in the previous sections are verified in Sect. 8.1 where we compare the numerical
results with analytical solutions.

In Sect. 8.2 we apply the improved modified methods to complex waste-case scenarios. An introduction
to the waste cases in 2d and 3d are given and the results and computation time are discussed.

8.1 Benchmark problems

We compare the results of the standard method with the modified method. The standard method is based
on the operator-splitting method with the convection and reaction equation. This method has a splitting
error in time of order O(τn). The modified method described in Sect. 4 is based on the discretization
method with embedded analytical solutions for the convection–reaction equation.

We start with the one-dimensional problem and compare the results with the analytical solution.

8.1.1 Transported triangle

For the first experiment we use a one-dimensional benchmark problem with delta initial conditions. The
analytical solution is given by Eqs. 34 and 35 and we compare the analytical solution with the numerical
ones.

We calculate the solutions on a two-dimensional domain for which the velocity field is constant
in the x-direction with constant values of v =(1·0, 0·0)T . We use only the convection–reaction equation
with 4 components, given in the form

Ri∂tci + v·∇ci = −Riλici + Ri−1λi−1ci−1 with i = 1, . . . , 4, (53)

where the inflow/outflow boundary condition is given by n·v ci = 0·0 which means no inflow nor outflow.
The initial conditions are given as

c1(x, 0) =
{−x + 1, 0 ≤ x ≤ 1,

0 , otherwise,
(54)

ci(x, 0) = 0·0, i = 2, . . . , 4. (55)

For the one-dimensional problem we might compare the numerical solutions with the analytical ones
derived in the previous sections. We use the L1-norm to compare the solutions, which is given by

El
L1

:=
∑

i=1,...,m

Vi|cn
l (xj, yj, tn)− Cl(xi, yi, tn)| with l = 1, . . . , 4, (56)

where cn
l (xi, yi, tn) is the numerical solution, while Cl(xi, yi, tn) is the analytical solution; see (34) and (35).

We apply the L1-norm as error mass for the convection–reaction equation; cf. [6].
The model domain is given as a rectangle of 8 × 1 units. The initial coarse grid is given as 8 qua-

dratic unit elements, the uniform refinements are defined upto level 7 (131072 Elements). We choose the
parameters to get results at the end of the same maximum value, so that we would not see the influ-
ence of numerical effects. For the first test we use the following parameters: We use the decay rates of
λ1 = 0·4, λ2 = 0·3, λ3 = 0·2, λ4 = 0 and the retardation factors R1 = 1, R2 = 2, R3 = 4, R4 = 8.

Our model time is given as t = 0, . . . , 6. We compare the results at the final time t = 6. The L1-norm is
computed and the numerical convergence rate given as

ρ =
(

log
(

El
L1

)
− log

(
El−1

L1

))
/ log(0·5) (57)

for the computed levels l = 4, . . . , 7.
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Fig. 2 Concentration for the four components with ascend-
ing retardation factors at time t = 6

The first results are presented with the standard method and the L1-errors are given in Table 1. The
values for the numerical convergence-orders are denoted in Table 2. The results of the calculations are of
first order for all components, because of the first-order operator-splitting method.

The following results are obtained by the modified method. We run the application with the same
parameters as for the standard method. The L1-errors for the modified method for the different time- and
grid-widths are presented in Table 3.

The numerical convergence orders for the modified method are calculated and presented in Table 4. For
the first component we get first-order accuracy because of the space discretization for the discontinuous
impulse which is of first order. The results of the next components are of higher order. We can skip the
error for the time discretization and for the space discretization we obtain a higher order because of the
continuous impulses.

Table 1 The L1-errors computed with the standard method

l E1
L1

E2
L1

E3
L1

E4
L1

4 2·666 × 10−3 9·853 × 10−4 9·77 × 10−4 4·132 × 10−4

5 1·297 × 10−3 4·740 × 10−4 4·805 × 10−4 2·013 × 10−4

6 6·148 × 10−4 2·328 × 10−4 2·377 × 10−4 9·925 × 10−5

7 2·969 × 10−4 1·154 × 10−4 1·181 × 10−4 4·925 × 10−5

Table 2 The convergence orders for the L1-errors with the standard method

l ρ1
L1

ρ2
L1

ρ3
L1

ρ4
L1

4
5 1·0394 1·0556 1·023 1·0374
6 1·077 1·0257 1·015 1·0202
7 1·0501 1·0124 1·009 1·0109
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Table 3 The L1-errors computed with the modified method

l E1
L1

E2
L1

E3
L1

E4
L1

4 2·666 × 10−3 3·451 × 10−4 6·719 × 10−5 2·376 × 10−5

5 1·297 × 10−3 1·072 × 10−4 1·669 × 10−5 5·573 × 10−6

6 6·148 × 10−4 3·374 × 10−5 4·251 × 10−6 1·374 × 10−6

7 2·969 × 10−4 1·117 × 10−5 1·091 × 10−6 3·442 × 10−7

Table 4 The convergence-orders for the L1-errors with the modified method

l ρ1
L1

ρ2
L1

ρ3
L1

ρ4
L1

4
5 1·0394 1·686 2·009 2·092
6 1·077 1·667 1·973 2·0201
7 1·0501 1·594 1·962 1·997

The results of the computations are presented for the final time t = 6 in Fig. 2. The first component is
less retarded and therefore runs till the end of the interval. The next components are decreased, stronger
retarded and therefore spread out. Because of the coupling with the previous component, the next com-
ponents run till the end of the first component. The last component is spread out from the first part of the
interval till the end.

In the next section we will present a benchmark problem for a two-dimensional case. We also derive the
analytical solution.

8.1.2 Rotating pyramid

This benchmark problem is introduced in the literature as a rotating Gaussian impulse; cf. [9]. To apply this
problem also to a system of convection–reaction equations, we modify the problem for our derived analyt-
ical one-dimensional solutions. The modification is in the transformation of the Cartesian coordinates to
polar coordinates. Because of this transformation the problem can be reduced to a one-dimensional prob-
lem. We can project the initial conditions, which are triangles, to polar coordinates. So on each circle the
same velocity is obtained and the solution can be transformed back to that of the original one-dimensional
problem. The basic reconstruction is done in [21] whereas next we present the main ideas.

The transformation from Cartesian (x, y) to polar (r,α) coordinates is given by

r =
√

x2 + y2, α = arctan
(y

x

)
, ε(r) = rα0 (58)

with α0 as the initial angle and ε(r) the length of the circular arc with radius r.
First we transform the triangular impulse on the cylinder surface and get a continuous impulse. Then

we transfer the continuity in the r-direction with the dependency of the initial concentration c0(r). The
transformation is given by

rmed = ra + rb

2
, (59)

c0(r) = cinit

⎧
⎪⎨

⎪⎩

2
rb−ra

(r − ra) ra ≤ r ≤ rmed,
−2

rb−ra
(r − rb) rmed ≤ r ≤ rb

0.0 otherwise,
, cinit ∈ IR+, (initial-concentration). (60)
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Table 5 The L1-error and the convergence rate for modified method with embedded analytical solution

l E1
L1

ρ1
L1

E2
L1

ρ2
L1

E3
L1

ρ3
L1

E4
L1

ρ4
L1

4 7·12 × 10−3 5·80 × 10−4 3·09 × 10−5 8·28 × 10−7

5 2·74 × 10−3 1·377 2·14 × 10−4 1·44 1·12 × 10−5 1·46 2·86 × 10−7 1·53
6 1·10 × 10−3 1·32 8·82 × 10−5 1·27 4·90 × 10−6 1·19 1·20 × 10−7 1·25
7 4·40 × 10−4 1·322 3·50 × 10−5 1·33 1·90 × 10−6 1·37 4·80 × 10−8 1·32

This initial impulse rotates over the angle α. The length of the arc is calculated as

xarc(r,α) = r α, (61)

where r is the radius of the point (x, y) and α is the angle. The velocity is given in the divergence-free form

v =
(−4·0 y

4·0 x

)
(62)

and in polar-coordinates it is given as

v = 4·0 r. (63)

The initialization for the rotating pyramid is given by

u1,init = u1,Tri(xarc(r,α0), t0, ε(r), c0(r), v1, λ1), (64)

ui,init = 0·0 with i = 2, . . . , m (65)

with t0 = 0·0, v1 = v/R1; m is the number of components and u1,Tri the analytical solution of a convection–
reaction equation with a triangular impulse.

The analytical solution for an arbitrary time is given as

ui,Tri = ui,Tri(xarc(r,α), t, ε(r), c0(r), v1, . . . , vi, λ1, . . . , λi), (66)

where i = 1, . . . , m and vi = v/Ri.
We compute the example for four components. The retardation factors are R1 = 1·0, R2 = 2·0, R3 =

4·0, R4 = 8·0 and the reaction factors are λ1 = 1·5, λ2 = 1·4, λ3 = 1·3, λ4 = 0·0. The height of the
pyramid is cinit = 1, the base area of the pyramid has a radius 0·125 ≤ r ≤ 0·375 and the initial angle
α0 = 0·22. The next components are initialized with 0·0. The boundary conditions are trivial inflow and
outflow conditions. We have a domain with [−0·5, 0·5] × [−0·5, 0·5] and the coarse grid consists of only one
element. We maximally refine till grid-level 7. The time steps are fixed at that level and satisfy the Courant
number 0·5. We calculate up to the time t = π/4.

For the modified method Table 5 reports the results for the L1-error and convergence rates. For all
components we reach higher-order results because of the higher-order modified method. The results are
displayed in Figs. 3 and 4. In Fig. 3 we present the initialization whereas Fig. 4 displays the results at t = π/4.
High concentrations are plotted in dark grey, no concentrations are plotted in a lighter shade of grey.

The concentrations of the higher components are more strongly retarded. The first component is trans-
ported furthest and rotated up to half of the circle. The previous components are spread out till the next
components. The two-dimensional solutions also satisfy our theoretical results.

In the next section we present the complex waste-case scenarios of a waste disposal in a salt dome.

8.2 Waste-case scenarios

We calculate scenarios of waste cases that help to draw new conclusions for waste disposals in salt domes.
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Fig. 3 The initial concentration of the first component
at the time point t = 0, the other components are initial-
ized with 0

Fig. 5 Flow-field for a two-dimensional calculation

Fig. 4 The concentrations of the four components at the time-point t= π
4

We consider a model based on a rock overlying a salt dome. We suppose a waste case, so that a perma-
nent source of radioactive contaminant groundwater flows from the bottom of the overlying rock, where
the waste disposal is situated. We suppose that the contaminants move with the groundwater, which flows
through the overlying rock. Based on our model we calculate the transport and the reaction of these
contaminants coupled with decay chains. The simulation time is 10,000 [a], where “a” stands for “anno” or
“year”, and we calculate the concentration that flows to the top of the overlying rock. With the above data
one should be able to conclude whether the waste disposal is sufficiently safe.

The next two cases are presented using data from GRS in Braunschweig (Germany); cf. [11, 22].

8.3 First waste case: two-dimensional model

We have a model domain of 6,000[m] × 150[m] with four different layers with different permeabilities, [22].
Groundwater flows through the domain from the right boundary to the left. The groundwater flows faster
through the permeable layer than through the impermeable layers. Therefore, the groundwater flows from
the right boundary to the middle half of the domain and through the permeable layer down to the bottom
of the domain and is washed up in the left domain to the top. The groundwater flows in the left top part
to the outflow at the left boundary. The flow field with the velocity is calculated with the program package
d3f and presented in Fig. 5.

In the middle-bottom of the domain the contaminants flow as a permanent source. With the stationary
velocity field the contaminants are computed with the software package R3T. The flow field transports
the radioactive contaminants up to the top of the domain. The decay chain involves 26 components in the
following manner:

Pu−244 → Pu−240 → U−236 → Th−232 → Ra−228

Cm−244 → Pu−240

U−232
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Fig. 6 Concentration of U-236 at the time point t = 100 [a] and t = 10, 000 [a]

Pu−241 → Am−241 → Np−237 → U−233 → Th−229

Cm−246 → Pu−242 → U−238 → U−234 → Th−230 →
Ra−226 → Pb−210

Am−242 → Pu−238 → U−234

Am−243 → Pu−239 → U−235 → Pa−231 → Ac−227.

We introduce an important concentration in this decay chain. At the top of Fig. 6 the contaminant
Uran-isotope U-236 after 100 [a] is presented. This isotope is less retarded and has a very long half-life
period. As a result, the contaminant flows furthest and decays less. This effect is presented in the lower
part of Fig. 6. The diffusion process has spread out the contaminant in the entire left part of the domain.
Also, the impermeable layer is contaminated. After a time period of 10,000 [a] the contaminant has moved
up to the top of the domain.

The calculations were carried out on uniform grids. The convergence of the used grids is confirmed by
adaptive-grid calculations. The calculation confirmed the results for finer and smaller time steps; cf. Table 6.
We start our calculations with explicit methods till the nature of the equations becomes diffusive. Then we
apply implicit methods and are able to employ larger time steps. With this procedure we can satisfy the
forced calculation time of one day at the most.

In the next section we describe a three-dimensional test case.

8.4 Second waste case: three-dimensional model

In this example we consider a three-dimensional model, because of the importance of three-dimensional
effects in groundwater flow. We simulate about 10,000 [a] and focus on important contaminants that flow
furthest with a high rate of concentration. We assume an anisotropy domain of 6,000 [m] ×2, 000 [m]
×1, 500 [m] with different permeable layers. We have calculated 26 components as presented in the two-
dimensional case. The parameters for the diffusion and dispersion tensor are given as: D = 1×10−9 [m2/s],
αL = 4·0 [m], αT = 0·4 [m], |v|max = 6 × 10−6 [m/s], ρ = 2 × 103, DL = αL|v| and DT = αT |v|, where
the longitudinal dispersion length is 10 times larger than the transversal dispersion. The source is situated
at the point (4, 250·0, 2,000·0, 1,040·0) and the concentrations are flowing at a constant rate. The under-

Table 6 Computation of the two-dimensional case

Processors Refinement Number of Number of Time for Total time (h)
elements time-steps one time-step (s)

30 Uniform 75,000 3,800 5 5·5
64 Adaptive 350,000 3,800 14 14·5
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Fig. 7 Flow field for a
three-dimensional
calculation

lying velocity fields are calculated with d3f and we added two sinks at the surface with the coordinates
(2,000, 2,100, 2,073) and (2,500, 2,000, 2,073).

We simulate the transport and the reaction of the contaminants with our software-package R3T. As a
result, we can simulate the required pumping-rate of the sinks to bring out all the contaminant groundwa-
ter. We present the velocity field in Fig. 7. The groundwater flows form the right boundary to the middle
of the domain. Due to the impermeable layers the groundwater flows downwards and filters up in the
middle part of the domain. Further, the groundwater moves upwards to the sinks, seen in the left part of
the domain. Because of the influence of the salt dome, the salt moves up with the groundwater and we get
curls in the lower middle part of the domain. These parts are interesting for 3d calculations and, owing
to these curls, the groundwater filters up. We now pay attention to the important component U-236. This
component is less retarded and flows up to the earth’s surface into the sinks. At the top of Fig. 8 we present
the concentration in the initial concentration at time point t = 100 [a]. We present vertical cut-planes and in
the next picture a cut-plane through the source term. In the bottom of Fig. 8 the concentration is presented
at the end-time point t = 10,000 [a]. The concentration flows from the bottom up over the impermeable
layer into the sinks at the top of the domain.

At the beginning of the calculation we use explicit discretization methods with respect of the convec-
tion-dominant case. After the initializing process the contaminants spread out with the diffusion process.

Fig. 8 Concentration of U-236 at the time-point t = 100 [a] and t = 10,000 [a]
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Table 7 Three-dimensional calculations of a realistic potential damage event

Processors Refinement Number of Number of Time for Total time (h)
elements time-steps one time step (s)

16 Uniform 531,264 3·600 13·0 13·0
72 Adaptive 580,000 3·600 18·5 18·5

We use the implicit methods with larger time-steps and are able to calculate the forced time-period also in
a higher-order discretization.

Table 7 lists the results of our computations. We begin with convergence results on uniform refined
meshes. This confirms the results obtained with adaptive refined meshes and we get the same results as
with smaller time-steps. The forced calculation time of one day is fulfilled.

9 Conclusions and discussions

In this paper we have proposed an efficient method for solving a complex system of convection–diffusion
dispersion–reaction equations for a real-life model in waste disposal. We designed embedded discretization
methods based on finite-volume methods and one-dimensional analytical solutions. For such an embedded
method one can use larger time-steps because of the explicit time-discretization and analytical solutions.
The diffusion–dispersion equations are discretized using a standard finite-volume method, based on central
differences, which is stable for large time-steps. The combination of both equation parts with higher-order
operator-splitting methods yields higher-order schemes in time and space. To accelerate the computation
of the implicit discretized equations, we applied a fast multi-grid solver. The combination of discretization
and solver methods allowed us to reach stable and consistent methods for complex convection–diffusion
dispersion–reaction equations, with respect to the convection-dominant case. The verification of the pro-
posed methods was done with special test examples, which were designed for the purpose of comparing
the analytical solutions and the numerical solutions. We applied our methods to 2d and 3d models using
the adaptive and parallel program toolbox developed in [38, 39]. The main advantages are fast computing
times and accurate results based on explicit solution of the convection-dominant equation part. As a result,
one can compare various waste scenarios which are simulated in less than 1 day and involve about 500,000
elements. Our results are used for predicting possible scenarios of such waste disposals placed in salt domes.

In the future we will focus us on the design of mixed discretization and solver methods which embed
local analytical solutions of simpler equation parts and couple the simpler parts to iterative solver methods,
for instance operator-splitting methods. The accuracy of a numerical solution can be improved by analytical
parts which are independent of the underlying discretization scale. In a subsequent paper, we will consider
such behavior and propose correct decoupling methods of multi-physics problems and new more accurate
iterative methods.
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9. Frolkovič P (2002) Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput

Visuali Sci 5:73–83
10. Cockburn B (2003) Discontinuous Galerkin methods for convection-dominated problems. In: Barth TJ, Deconinck H

(eds) Higher-order methods for computational physics. Lecture Notes in Computational Science and Engineering, vol 9.
Springer Verlag, Berlin, Heidelberg, pp 69–225

11. Fein E, Kühle T, Noseck U (2001) Design of a 3d program-code for simulating the contaminat-transport. Fachliches
Feinkonzept, GRS-Braunschweig, pp 1–30

12. Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection–diffusion–reaction equations.
Springer series in computational mathematics, vol 33. Berlin, Springer Verlag

13. Hundsdorfer WH (1996) Numerical solution od advection–diffusion–reaction equations. Technical Report NM-N9603,
CWI

14. Butcher JC (2003) Ordinary differential equations. John Wiley &Sons, Chichester
15. Strang G (1968) On the construction and comparision of difference schemes. SIAM J Numer Anal 5:506–517
16. Verwer JG, Sportisse B (1998) A note on operator splitting in a stiff linear case. MAS-R9830, ISSN 1386-3703
17. Hackbusch W (1985) Multi-grid methods and applications. Springer-Verlag, Berlin, Heidelberg
18. Wittum G (1995) Multi-grid methods: a introduction. Bericht 1995-5 Institut für Computeranwendungen der Universität

Stuttgart
19. Langtangen HP (2003) Computational partial differential equations. Text in computational science and engineering, vol

2. Springer-Verlag, Berlin, Heidelberg
20. Yoshida H (1990) Construction of higher order symplectic integrators. Phys Lett A 150:262–268
21. Geiser J (2004) Discretisation Methods for Systems of Convective-Diffusive-Dispersive-Reactive Equations and Appli-

cations. Doctor-Thesis, University of Heidelberg, Heidelberg
22. Fein E (2000) Test-example for a waste-disposal and parameters for a decay-chain. Private communications Braunschweig
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26. Frolkovič P, De Schepper H (2001) Numerical modelling of convection dominated transport coupled with density driven
flow in porous media. Adv Water Resour 24:63–72

27. Higashi K, Pigford Th H (1980) Analytical models for migration of radionuclides in geologic sorbing media. J Nucl Sci
Technol 17:700–709

28. Jury WA, Roth K (1990) Transfer functions and solute movement through soil. Bikhäuser Verlag, Basel, Boston, Berlin
29. Bateman H (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations.

Proc Cambridge Phil Soc 15:423–427
30. Sun Y, Petersen JN, Clement TP (1999) Analytical solutions for multiple species reactive transport in multiple dimensions.

J Contaminant Hydrol 35:429–440
31. Scheidegger AE (1961) General theory of dispersion in porous media. J Geophys Res 66:32–73
32. Genuchten MTh (1985) Convective-dispersive transport of solutes involved in sequential first-order decay reactions.

Comput Geosci 11:129–147
33. Eykolt GR (1999) Analytical solution for networks of irreversible first-order reactions. J Water Res 33:814–826
34. Davis B (1978) Integral transforms and their applications. Applied Mathematical Sciences vol 25. Springer Verlag, New

York, Heidelberg
35. Yserentant H (1993) Old and new convergence proofs for multi-grid methods. Acta Numer 3:285–326
36. GRAPE (2001) GRAphics Programming Environment for mathematical problems, Version 5.4. Institut für Angewandte

Mathematik, Universität Bonn und Institut für Angewandte Mathematik, Universität Freiburg, Freiburg, Bonn
37. Bastian P, Birken K, Eckstein K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H (1997) UG - a flexible software

toolbox for solving partial differential equations. Comput Visual Sci 1:27–40
38. Geiser J (2001) Numerical simulation of a model for transport and reaction of radionuclides. In: Margenov S, Wasniewski

J, Yalamov PY (eds) Scientific computing, third international conference, LSSC 2001, Sozopol, Bulgaria. Lecture notes
in computer science vol 2179. Springer-Verlag, Berlin, Heidelberg, pp 487–496

39. Geiser J (2004) R3T: Radioactive-retardation–reaction-transport-program for the simulation of radioactive waste dispos-
als. Proceedings: computing, communications and control technologies: CCCT 2004. The University of Texas at Austin,
pp 1–8



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


